ค่าเฉลี่ยเคลื่อนที่ตัวอย่างนี้สอนวิธีคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงที่ 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะยิ่งเรียบขึ้น ระยะห่างที่สั้นลงค่าเฉลี่ยของค่าเฉลี่ยที่เคลื่อนที่ได้ใกล้เคียงกับจุดข้อมูลจริงมากขึ้นการคาดการณ์การคาดการณ์โดยเฉลี่ยของปีก่อน ตามที่คุณอาจคาดเดาเรากำลังมองหาวิธีการดั้งเดิมบางอย่างที่คาดการณ์ไว้ แต่หวังว่าสิ่งเหล่านี้เป็นการนำเสนอที่คุ้มค่าสำหรับปัญหาด้านคอมพิวเตอร์บางส่วนที่เกี่ยวข้องกับการใช้การคาดการณ์ในสเปรดชีต ในหลอดเลือดดำนี้เราจะดำเนินการต่อโดยการเริ่มต้นตั้งแต่เริ่มต้นและเริ่มทำงานกับการคาดการณ์ Moving Average การย้ายการคาดการณ์เฉลี่ย ทุกคนคุ้นเคยกับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยไม่คำนึงถึงว่าพวกเขาเชื่อหรือไม่ว่า นักศึกษาทุกคนทำแบบฝึกหัดตลอดเวลา ลองนึกถึงคะแนนการทดสอบของคุณในหลักสูตรที่คุณจะมีการทดสอบสี่ครั้งระหว่างภาคการศึกษา ให้สมมติว่าคุณมี 85 คนในการทดสอบครั้งแรกของคุณ คุณคาดหวังอะไรสำหรับคะแนนการทดสอบที่สองของคุณคุณคิดอย่างไรว่าครูของคุณจะคาดการณ์คะแนนทดสอบต่อไปคุณคิดอย่างไรว่าเพื่อนของคุณอาจคาดเดาคะแนนการทดสอบครั้งต่อไปคุณคิดว่าพ่อแม่ของคุณคาดการณ์คะแนนการทดสอบต่อไปได้ไม่ว่า การทำร้ายทั้งหมดที่คุณอาจทำกับเพื่อนและผู้ปกครองของคุณพวกเขาและครูของคุณมีแนวโน้มที่จะคาดหวังว่าคุณจะได้รับบางสิ่งบางอย่างในพื้นที่ของ 85 ที่คุณเพิ่งได้ ดีตอนนี้ให้สมมติว่าแม้จะมีการโปรโมตด้วยตัวคุณเองกับเพื่อน ๆ ของคุณคุณสามารถประเมินตัวเองและคิดว่าคุณสามารถเรียนได้น้อยกว่าสำหรับการทดสอบที่สองและเพื่อให้คุณได้รับ 73. ตอนนี้สิ่งที่ทุกอย่างที่เกี่ยวข้องและไม่แยแสไป คาดว่าคุณจะได้รับการทดสอบครั้งที่สามมีสองแนวทางที่น่าจะเป็นไปได้สำหรับพวกเขาในการพัฒนาประมาณการโดยไม่คำนึงว่าพวกเขาจะแบ่งปันกับคุณหรือไม่ พวกเขาอาจพูดกับตัวเองว่าผู้ชายคนนี้มักจะเป่าควันเกี่ยวกับความฉลาดของเขา เขาจะได้รับอีก 73 ถ้าเขาโชคดี บางทีพ่อแม่จะพยายามสนับสนุนและพูด quotWell เพื่อให้ห่างไกลได้รับ 85 และ 73 ดังนั้นคุณควรคิดเกี่ยวกับการเกี่ยวกับ (85 73) 2 79 ฉันไม่รู้ว่าบางทีถ้าคุณไม่ปาร์ตี้ และเหวี่ยงพังพอนไปทั่วสถานที่และถ้าคุณเริ่มต้นทำมากขึ้นการศึกษาที่คุณจะได้รับคะแนนสูงขึ้นทั้งสองประมาณการเหล่านี้เป็นจริงการคาดการณ์เฉลี่ยย้าย อันดับแรกใช้คะแนนล่าสุดของคุณเพื่อคาดการณ์ประสิทธิภาพในอนาคตของคุณเท่านั้น นี่เรียกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยใช้ข้อมูลระยะเวลาหนึ่ง ข้อที่สองเป็นค่าพยากรณ์เฉลี่ยเคลื่อนที่ แต่ใช้ข้อมูลสองช่วง ให้สมมติว่าคนเหล่านี้ทั้งหมด busting ในจิตใจที่ดีของคุณมีการแบ่งประเภทของคุณออกและคุณตัดสินใจที่จะทำดีในการทดสอบที่สามด้วยเหตุผลของคุณเองและจะนำคะแนนที่สูงขึ้นในด้านหน้าของ quotalliesquot ของคุณ คุณใช้การทดสอบและคะแนนของคุณเป็นจริง 89 ทุกคนรวมทั้งตัวคุณเองเป็นที่ประทับใจ ดังนั้นตอนนี้คุณมีการทดสอบครั้งสุดท้ายของภาคการศึกษาที่กำลังจะมาถึงและตามปกติแล้วคุณรู้สึกว่าจำเป็นที่จะต้องกระตุ้นให้ทุกคนคาดการณ์เกี่ยวกับวิธีที่คุณจะทำในการทดสอบครั้งล่าสุด ดีหวังว่าคุณจะเห็นรูปแบบ ตอนนี้หวังว่าคุณจะเห็นรูปแบบนี้ คุณเชื่อว่าเป็นนกหวีดที่ถูกต้องที่สุดในขณะที่เราทำงาน ตอนนี้เรากลับไปที่ บริษัท ทำความสะอาดแห่งใหม่ของเราซึ่งเริ่มต้นโดยพี่สาวที่แยกกันอยู่ของคุณชื่อ Whistle While We Work คุณมีข้อมูลการขายในอดีตที่แสดงโดยส่วนต่อไปนี้จากสเปรดชีต ก่อนอื่นเราจะนำเสนอข้อมูลสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 3 ช่วง รายการสำหรับเซลล์ C6 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C7 ถึง C11 แจ้งให้ทราบว่าค่าเฉลี่ยย้ายผ่านข้อมูลทางประวัติศาสตร์ล่าสุด แต่ใช้เวลาสามช่วงล่าสุดสำหรับการคาดการณ์แต่ละครั้ง นอกจากนี้คุณควรสังเกตด้วยว่าเราไม่จำเป็นต้องทำการคาดการณ์ในช่วงที่ผ่านมาเพื่อพัฒนาการคาดการณ์ล่าสุดของเรา นี้แน่นอนแตกต่างจากแบบจำลองการเรียบเรียงชี้แจง Ive รวมการคาดคะเนของคำพูดราคาตลาดเนื่องจากเราจะใช้คำเหล่านี้ในหน้าเว็บถัดไปเพื่อวัดความถูกต้องในการคาดการณ์ ตอนนี้ฉันต้องการนำเสนอผลที่คล้ายคลึงกันสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 2 ช่วง รายการสำหรับเซลล์ C5 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C6 ถึง C11 แจ้งให้ทราบว่าขณะนี้มีเพียงข้อมูลล่าสุดสองชิ้นที่ใช้ล่าสุดในการคาดการณ์เท่านั้น อีกครั้งฉันได้รวมการคาดคะเน quotpost เพื่อวัตถุประสงค์ในการอธิบายและเพื่อใช้ในภายหลังในการตรวจสอบการคาดการณ์ บางสิ่งบางอย่างอื่นที่มีความสำคัญที่จะแจ้งให้ทราบล่วงหน้า สำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ m-period เฉพาะค่าข้อมูลล่าสุดของ m ที่ใช้ในการคาดคะเนเท่านั้น ไม่มีอะไรอื่นที่จำเป็น สำหรับการคาดการณ์ค่าเฉลี่ยของระยะเวลา m-period เมื่อทำนายการคาดการณ์ของ quotpast ให้สังเกตว่าการทำนายครั้งแรกเกิดขึ้นในช่วง m 1 ทั้งสองประเด็นนี้จะมีความสำคัญมากเมื่อเราพัฒนาโค้ดของเรา การพัฒนาฟังก์ชัน Average Moving Average ตอนนี้เราจำเป็นต้องพัฒนาโค้ดสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้ความยืดหยุ่นได้มากขึ้น รหัสดังต่อไปนี้ โปรดทราบว่าปัจจัยการผลิตเป็นจำนวนงวดที่คุณต้องการใช้ในการคาดการณ์และอาร์เรย์ของค่าทางประวัติศาสตร์ คุณสามารถเก็บไว้ในสมุดงานที่คุณต้องการ Function MovingAverage (Historical, NumberOfPeriods) ในฐานะ Single Declaring และ Initializing ตัวแปร Dim Item As Variant Dim Counter เป็นจำนวนเต็ม Integer Dim Single Dim HistoricalSize As Integer ตัวแปรที่ Initializing ตัวแปร Counter 1 สะสม 0 การกำหนดขนาดของอาร์เรย์ Historical HistoricalSize Historical. Count สำหรับ Counter 1 ถึง NumberOfPeriods สะสมจำนวนที่เหมาะสมของค่าที่สังเกตก่อนหน้านี้ล่าสุด Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage การสะสม NumberOfPeriods รหัสจะอธิบายในคลาส คุณต้องการวางตำแหน่งฟังก์ชันในสเปรดชีตเพื่อให้ผลลัพธ์ของการคำนวณปรากฏขึ้นที่ที่ควรทำดังนี้หากคุณเห็นข้อความนี้เบราว์เซอร์ของคุณไม่ใช้งานหรือไม่สนับสนุน JavaScript หากต้องการใช้คุณลักษณะทั้งหมดของระบบช่วยเหลือเช่นการค้นหาเบราว์เซอร์ของคุณต้องเปิดใช้งานการสนับสนุน JavaScript ค่าเฉลี่ยเคลื่อนที่ที่มีการถ่วงน้ำหนักโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบง่ายค่าข้อมูลแต่ละค่าใน quotWindow ที่คำนวณได้จะให้ความสำคัญหรือน้ำหนักเท่ากัน มักเป็นเช่นนี้โดยเฉพาะอย่างยิ่งในการวิเคราะห์ข้อมูลราคาทางการเงินว่าข้อมูลล่าสุดเมื่อเร็ว ๆ นี้ควรมีน้ำหนักมากขึ้น ในกรณีเหล่านี้ค่าเฉลี่ยถ่วงน้ำหนักที่มีการถ่วงน้ำหนัก (หรือค่าเฉลี่ยเคลื่อนที่แบบเสด็จพระราชดำเนิน - ดูหัวข้อต่อไปนี้) มักต้องการ พิจารณาตารางค่าข้อมูลการขายแบบเดียวกันเป็นเวลา 12 เดือน: ในการคำนวณ Average Weighted Moving Average: คำนวณจำนวนช่วงเวลาของข้อมูลที่เข้าร่วมในการคำนวณค่าเฉลี่ยเคลื่อนที่ (เช่นขนาดของคำจำกัดความการคำนวณ) ถ้าหน้าต่างคำนวณถูกระบุว่าเป็น n ค่าข้อมูลล่าสุดในหน้าต่างจะคูณด้วย n ค่าคูณด้วย n-1 ล่าสุดคูณด้วยค่าก่อนคูณด้วย n-2 และอื่น ๆ สำหรับค่าทั้งหมด ในหน้าต่าง หารผลรวมของค่าคูณทั้งหมดด้วยการรวมน้ำหนักเพื่อให้ค่า Average Weighted Moving Average เหนือหน้าต่างดังกล่าว วางค่าเฉลี่ยถ่วงน้ำหนักในคอลัมน์ใหม่ตามการวางตำแหน่งโดยรวมต่อท้ายที่อธิบายไว้ด้านบน หากต้องการอธิบายขั้นตอนเหล่านี้ให้พิจารณาว่าจะต้องใช้ค่าเฉลี่ยการขายถ่วงน้ำหนัก 3 เดือนของยอดขายในเดือนธันวาคม (โดยใช้ตารางด้านบนของมูลค่าการขาย) คำว่า quot3-monthquot อนุมานได้ว่าคำจำกัดความในการคำนวณเป็น 3 ดังนั้นอัลกอริธึมการคำนวณ Weighted Moving Average สำหรับกรณีนี้ควรเป็นดังนี้หรือถ้าค่าเฉลี่ยถ่วงน้ำหนัก 3 เดือนถูกประเมินจากช่วงข้อมูลต้นฉบับทั้งหมดผลลัพธ์จะเป็น : ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก 3 เดือน
No comments:
Post a Comment